P2-purigenic receptors regulate phospholipase C and adenylate cyclase activities in immortalized Schwann cells.
نویسندگان
چکیده
Schwann cells play an important role in both the development and regeneration of peripheral nerves. Proliferation and differentiation of Schwann cells are critically dependent on changes in the levels of cAMP. ATP is a fast excitatory transmitter in the peripheral nervous system, inducing depolarization of the vagus nerve through occupancy of P2-purinergic receptors. In the present study we demonstrate that extracellular ATP stimulates phospholipase C and inhibits adenylate cyclase activities in cultured Schwann cells. Addition of ATP inhibited, in a concentration-dependent manner, forskolin- or isoprenaline-stimulated adenylate cyclase activity. The rank order of potency corresponding to different purinergic receptor agonists was 2-methylthio-ATP > ATP = ADP > or = adenosine 5'-[gamma-thio]triphosphate (ATP[S]) > UTP, consistent with the involvement of a P2y subtype. Adenosine and adenosine 5'-[alpha,beta-methylene]-triphosphate (pp[CH2pA) were ineffective. Preincubation with pertussis toxin completely blocked this inhibitory effect. When Schwann cells were pre-labelled with myo-[3H]inositol and incubated in Hanks' balanced salt solution containing Ca2+ and Mg2+, addition of ATP[S] resulted in a concentration-dependent increase in the release of InsP with a concomitant increase in intracellular free [Ca2+] ([Ca2+]i). Under these conditions, the effects of both ATP and UTP were of lower magnitude. Removal of Ca2+ and Mg2+ from the assay medium resulted in a significant increase in the effects of ATP[S], ATP and UTP. The decreased response observed in the presence of both bivalent cations (1.2 mM Ca2+ and 1 mM Mg2+) could not be explained either by increased degradation of ATP by Ca2+/Mg2+-dependent nucleotidases or by cation influx. The rank order of potency for the effects of agonists on phospholipase C activity was ATP[S] = adenosine 5'[gamma-imido]triphosphate > ATP -UTP > ADP, indicating the involvement of a P(2U) receptor subtype in this response. Adenosine, AMP and pp[CH2]pA were ineffective. These results demonstrate that immortalized Schwann cells express P(2U) and P(2Y) purinoceptors, which are coupled to stimulation of phospholipase C and inhibition of adenylate cyclase, respectively. Our observations unveil signal-transduction pathways that may be used by ATP to regulate proliferation and differentiation of Schwann cells, and ultimately to influence nerve homeostasis.
منابع مشابه
Pituitary adenylate cyclase-activating peptide induces neurite outgrowth in cultured monkey trigeminal ganglion cells: Involvement of receptor PAC1
PURPOSE Our previous studies in the rabbit trigeminal nerve (TgN) showed that pituitary adenylate cyclase-activating peptide (PACAP) accelerated the extension of neuronal processes and recovery of corneal sensitivity. The purposes of the present study were 1) develop a procedure to culture trigeminal nerve (TgN) cells from monkeys, 2) test whether PACAP induces sprouting and elongation of axons...
متن کاملCross-talk between G(s)- and G(q)-coupled pathways in regulation of interleukin-4 by A(2B) adenosine receptors in human mast cells.
Human mast cells express functional A(2A) and A(2B) adenosine receptors. However, only stimulation of A(2B), not A(2A), leads to secretion of interleukin (IL)-4, an important step in adenosine receptor-mediated induction of IgE synthesis by B-cells. In this study, we investigate intracellular pathways that link stimulation of A(2B) receptors to IL-4 up-regulation in HMC-1 mast cells. Both A(2A)...
متن کاملDirect linkage of three tachykinin receptors to stimulation of both phosphatidylinositol hydrolysis and cyclic AMP cascades in transfected Chinese hamster ovary cells.
The mammalian tachykinin system consists of three distinct peptides, substance P, substance K, and neuromedin K, and possesses three corresponding receptors. In this investigation we examined intracellular signal transduction of the individual tachykinin receptors by transfection and stable expression of these receptor cDNAs in Chinese hamster ovary cells. The three receptors commonly showed a ...
متن کاملMechanism of inhibition of adenylate cyclase by phospholipase C-catalyzed hydrolysis of phosphatidylcholine. Involvement of a pertussis toxin-sensitive G protein and protein kinase C.
The phospholipase C-mediated hydrolysis of phosphatidylcholine has been shown recently to be activated by a number of agonists. Muscarinic receptors, which trigger various signal transduction mechanisms including inhibition of adenylate cyclase through Gi, have been shown to be potent stimulants of this novel phospholipid degradative pathway. We demonstrate here, by exogenous addition of Bacill...
متن کاملInhibitory Gi/O-coupled receptors in somatosensory neurons: Potential therapeutic targets for novel analgesics
Primary sensory neurons in the dorsal root ganglia and trigeminal ganglia are responsible for sensing mechanical and thermal stimuli, as well as detecting tissue damage. These neurons express ion channels that respond to thermal, mechanical, or chemical cues, conduct action potentials, and mediate transmitter release. These neurons also express a large number of G-protein coupled receptors, whi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Biochemical journal
دوره 314 ( Pt 2) شماره
صفحات -
تاریخ انتشار 1996